壹作文 > 实用文 > 教案 >

六年级数学下册教案

时间: 康华 教案

六年级数学下册教案【篇1】

【教学内容】

义务教育课程标准北师大版试验教材六年级上册第一单元第6、7页圆的认识二。

【教学目标】

1、通过折纸活动,探索并发现圆是轴对称图形,理解同一个圆里半径与直径的关系。

2、进一步理解轴对称图形的特征,体会圆的特征。

3、在折纸找圆心、验证圆是轴对称图形等活动中,发展空间观念。

【教学重、难点】

1、圆的特征。

2、同一个圆里半径与直径的关系。

【教具、学具准备】

1、三角尺、直尺、圆规。

2、教学课件。

【教学设计】

一、实践操作。

1、折一折。

每人准备一个圆,请同学们想办法找出圆心。

2、小组活动:剪几个圆,折一折,你发现了什么?

小组交流。

3、汇报:沿着任意一条直径对折,都能完全重合。

4、小结:圆是轴对称图形,直径所在的直线是圆的对称轴。

圆有无数条对称轴。

在同一个圆里,直径的长度是半径的'2倍,可以表示为d=2rr=d/2。

二、尝试练习。

1、说一说学过的图形中哪些是轴对称图形?分别有几条对称轴?

正方形:4条

长方形:2条

等腰三角形:1条

等边三角形:3条

圆:无数条

2、要求学生剪出书本第7页做一做的三幅图,沿中心点A转动,同学们发现了什么?

三、巩固练习。

1、练一练第一题。

学生在书上填写,集体交流。

2、练一练第二题。

学生在书上填写,集体交流。

3、练一练第三题。

学生画出对称轴,集体交流。

4、练一练第四题。

学生实际测量,集体交流。

5、练一练第五题。

学生在书上填写,集体交流。

使学生通过折纸活动进一步理解同一个圆的半径都相等的特征,以及圆的轴对称性和同一个圆里半径和直径的关系。

引导学生整理已学过的轴对称图形。

让学生在活动中体会图形的旋转对称性,以及圆是一个任意旋转对称图形。

通过练习,进一步巩固所学知识。

四、全课小结。

【教学反思】

学生在掌握圆的特征的基础上,进一步认识圆,知道圆是一个轴对称图形,而且有无数条对称轴。

存在问题:对于画对称轴,学生掌握得层次不齐。需要进一步练习巩固!

六年级数学下册教案【篇2】

教材分析

这部分内容是在学生理解并掌握分数乘法的意义以及分数乘法的计算方法基础上进行教学的。它是分数应用题中最基本的,不仅分数除法应用题以它为基础,很多复合的分数应用题也是在它的基础上扩展的。因此,使学生掌握这咎应用题的解答方法对他们今后进一步学习较复杂的分数应用题具有重要的'意义。例1只涉一个数量,要求一个数量的几分之几是多少。要求的是已知数量的一部分,属于部分与整体的问题。在这里用线段图帮助学生题意,明确求我国人均耕地面积,就是求2500的是多少。从而掌握求一个数的几分之几是多少的实际问题的解答方法。

学情分析

学生对单位1已经有了一定的理解和认识。已经掌握分数乘法的意义以及分数乘法的计算方法。本课让学生分清把谁看作单位1。借助线段图分析题意,学生在画线段图时会遇到一定的困难,教师要适时指导。

教学目标

1、经历对实际问题的探究的过程,掌握求一个数的几分之几的问题的解答方法。并能正确地解答。

2、培养学生的分析能力与表达能力。

教学重点

掌握求一个数的几分之几的问题的数量关系,并能正确地解答。

教学难点

正确地确定单位1

教学过程

活动一:分析题意,理解数量关系。

教师出示例1:2003年世界人均耕地面积为2500平方米,我国人均耕地面积仅占世界人均耕地面积的。我国人均耕地面积是多少平方米?

教师引导学生理解我国人均耕地面积仅占世界人均耕地面积的是什么意思?(是把占世界人均耕地面积五光平均分成5份,我国人均耕地面积占其中的2份。)

教师然后让学生试着画一画线段图,分析题意。

全班与教师一起画线段图,借助于线段图理解题意,要求我国人均耕地面积就是求2500的是多少。

列式为:2500=

学生独立完成。

集体订正。

活动二:巩固练习。

1、教师出示做一做。

这是一道关于两个量之间的,一个量是另一个量的几分之几的问题。在解答时,教师也先让学生画线段图分析。

然后再独立解答。

2、完成练习四中的部分练习。

活动三:课堂小结。

六年级数学下册教案【篇3】

一、教学目的:

1、通过活动,使学生知道数学知识与生活有着密切的联系,能有意识的综合运用所学的知识解决简单的实际问题,学会与他人合作,培养组织活动的能力。

2、进行有关的'思想教育,如教育学生要有礼貌,注意安全,爱护果树等物品。

二、教学过程:

课前准备:课前已把表格发给了每一位学生,学生已对果园产生了兴趣,通过已经分好组的计划,让学生自己去收集有关的信息,例如:学校到果园实践购物及费用方面,有了解大家爱吃什么,卖多少,每种物品的价钱及一共要多少元等等,这些都要学生通过自己小组的讨论而定。

X月X日:全班师生乘车来到柳埠X果园进行参观,路上,大家兴致勃勃,纷纷询问各自所带的物品及自己小组的活动计划。

以下为教学片断的梗概:

师:现在我们已经到了美丽的果园,进了果园之后,要讲礼貌,注意安全,要爱护果树,保护好果园的环境。(在农民与学生的交流中,教师也要记录有关的数据这样自然的融入到班级中去。)(电脑设计果园,教师在其中)

小A:农民伯伯,您好,我们的果园这么大,它到底大鸡长有多少米,宽有多少米呢?

农民:果园可大了,长由174米,宽有126米。

教师:那它到底占地多少公顷?(及时引发学生思考)

(学生沉默片刻)

小B:大约有22100平方米,我是用174第六以126得出的。

教师:大家同意吗?

小C:不对,老师问的是多少公顷,而不是多少平方米,应该是2.21公顷。

教师:这次大家同意吗?

全班:同意。

小D:果园这么大,能栽多少棵树呢?

农民:我们这里有1278棵果树。

小E:这么多,那一棵苹果树能产多少千克苹果呢?

农民:大约一棵树能产50千克。

教师:农民伯伯用汗水换来的丰硕的果实,一千无苹果按市场价能卖多少元?(教师融入其中,能充分调动学生的积极性)谁能帮农民伯伯计算一下他一年能挣多少钱?

(学生争先恐后的想在农民伯伯这里展示一十自己,有的议论,有的笔算,有的干脆用上了计算器)。

小F:我们知道了,现在市场价每千克苹果1.60元,照这样计算,农民伯伯一年的收入大约是102240元。

六年级数学下册教案【篇4】

教学内容:

教材第37页例5、试一试和练一练,练习七第4~日题。

教学要求:

1.使学生进一步认识比例尺,学会根据比例尺求图上距离或实际距离。

2.使学生体会数学在实际生活里的应用,提高解决简单实际问题的能力。

教学重点:

进一步认识比例尺。

教学难点:

根据比例尺求图上距离或实际距离。

教学过程:

一、揭示课题

1.提问:什么是比例尺,

2.出示一些数据比例尺,让学生说一说比例尺前项、后项的倍数关系和比例尺的实际含义。

3.说明:利用比例尺,可以解决一些简单的实际问题,这节课就学习比例尺的应用。

二、教学新课

1.教学例5。

出示例5,读题。提问:题里已知什么,要求什么?按照比例尺的意义,你能解答吗?让学生自己讨论并进行解答,通过巡视看一看不同的解法。指名口答解题过程,老师板书。其间结合说明设未知数x的单位与图上距离的单位统一,用厘米,解题后再化成米数。提问:用不同方法解答这道题的过程是怎样的?指出;已知图上距离求实际距离,可以按照实际距离与图上距离的'倍数关系来解答,也可以按图上距离 :实际距离=比例尺列出比例,用解比例的方法就可以求出结果。

2.做练一练第1题。

指名板演,其余学生做在练习本上。集体订正,指名学生说一说怎样想的,要注意什么问题?

3.教学试一试。

出示试一试,读题。提问;题里已知什么,要求什么?你能自己解答吗,让学生自己做在练习本上。指名学生口答解题过程,老师板书。用比例解的指名学生说一说根据什么列比例的,应该设谁为x。指出:已知实际距离求图上距离,可以把实际距离缩小相应的倍数,也可以按图上距离 :实际距离=比例尺列出比例,再解比例求出结果.

4.做练一练第2题。

指名扳演,其余学生做在练习本上。集体订正,指名学生说说怎样想的,解答时还要注意什么。

5.做练习七第4题。

让学生做在练习本上,然后口答,老师板书。

6.做练习七第5题。

学生完成在练习本上。

三、课堂小结

这节课学习了什么内容?你学到了些什么?

四、布置作业

课堂作业:练习七第6、8题。

家庭作业:练习七第7题。

六年级数学下册教案【篇5】

教学目标:

1、在现实情境中了解负数产生的背景,理解正负数及零的意义,掌握正负数表达方法。

2、能用正负数描述现实生活中的现象,如温度、收支、海拔高度等具有相反意义的量。

3、体验数学与日常生活密切相关,激发学生对数学的兴趣。

教学重点:

在现实情境中理解正负数及零的意义。

教学难点:

用正负数描述生活中的现象。

教学准备:

温度计挂图等

教学过程:

一、谈话导入:

通过复习,你知道这节课要学什么么?(板书:负数)

说我们以前认识过哪些数?(自然数、小数、分数)

分别举例。指出:最常见的是自然数,小数有个特殊的标记“小数点”,分数有个特殊标记是“分数线”,你知道负数有什么特殊标记么?(负号,类似于减法)

二、学习例1:

1、你知道今天的最高温度么?你能在温度计上找到这个温度么?

介绍温度计:

(1)℃、℉,我们中国人用摄氏度为单位,即℃;℉是华士度,是欧美国家用的。

(2)以0为界,0上面的温度表示零上,0下面的温度表示零下。

(3)刻度。要注意一大格、一小格分别表示多少度?

在温度计上找到表示35℃的刻度。

你知道什么时候是0℃吗?(水和冰的混合物)

你知道太仓一年中的最低温度么?(零下5度左右)你能在温度计上找到它吗?

分别写出这三个温度:0℃,为了强调这个温度在零上,35℃还可以写成+35℃,而这个零下5度,应该写成—5℃。

读一读:正35,负5

分别说说在这3个不同的温度你的`感受。

2、完成试一试:

写出下面温度计上显示的气温各是多少摄氏度,并读一读。

对零下几度,可能学生会不能正确地看,注意指导。

3、完成第3页第2题的看图写一写,再读一读。

简单介绍有关赤道、北极、南极的知识。

4、完成第6页第4题:

先指名说说这三条鱼分别所处的地方,再选择合适的温度。也可选择几个让学生说说选择的理由。

5、读第7页第5题。,让学生说说体会。

6、完成第6题,分别在温度计上表示4个季节的温度。加强指导与检查。

三、学习例2:

1、出示例2图片,介绍“海平面”“海拔”的基本知识。

让学生指一指珠穆朗玛峰的高度是从哪里到哪里。补充:最新的测量,这个数据有所变化,有兴趣的同学可以查一查。

再指一指吐鲁番盆地的海拔。

指出:这两个地方,一个是高于海平面的,可以用“+8848米”来表示,另一个是低于海平面的,可以用“-155米”表示。

用你自己的理解来说说这样记录有什么好处?

2、完成第6页第1题:用正数或负数表示下面的海拔高度。

读一读第2题的海拔高度,它们是高于海平面还是低于海平面。

三、认识正负数的意义:

1、像温度在零上和零下或是海拔是高于和低于海平面可以用正数和负数来表示。黑板上这些数,哪些是正数?哪些是负数?

你能用自己的话来说说怎样的数是正数?怎样的数是负数?

0呢?为什么?

2、完成第3页第1题,先读一读,再把这些数填入相应的圈内。

3、完成第6页第3题:分别写出5个正数和5个负数。

六年级数学下册教案【篇6】

教学内容:

课本第29——30页例2和“练一练”,练习五第6-9题。

教学目标:

1、使学生理解一个数乘分数的意义,知道求一个数的几分之几可以用乘法计算。

2、通过操作,观察,培养学生的推理能力,发展学生的思维。

教学重难点:

一个数乘分数的意义以及计算方法。

课前准备:

多媒体课件

教学过程:

一、创设情境

同学们,上节课我们学习了分数乘整数的计算方法,你想不想继续往下学?在学新课之前我们先来复习一下上节课的内容。

复习:计算下面各题,并说出计算方法。

3/7 ×2 5/8 ×1 1/10 ×5

上面各题都是分数乘以整数,说一说分数乘以整数的意义以及计算方法

二、探究新知

今天,我们来学习一个数乘以分数的意义和计算方法。

1、教学例2

出示例2的`图,然后出示条件:

小芳做了10朵绸花,其中1/2是红花,2/5是绿花。

引导学生理解:“其中12 “是什么意思?

使学生明白是10朵中的1/2,然后出示问题

红花有多少朵?

引导学生看图理解:求红花有多少朵,就是求10朵的1/2

让学生应用已有的知识经验解决。

学生可能列式:10÷2=5(朵)

在此基础上指出:求10朵中的1/2是多少,还可以用乘法计算。

教师说明要求,学生列式解答。

在此基础上教学第(2)题,怎样解决

(2)绿花有多少朵?

可以先让学生在图中圈一圈,借助圈的过程理解求绿花有多少朵,就是把10朵平均分成5份,求这样的2份是多少,引导学生用以前的方法解决。

10÷5×2=4(朵)

在此基础上告诉学生:求10朵的2/5是多少也可以用10×2/5来计算。

学生独立计算,订正时指出:

计算10×2/5可以先约分

2、引导学生进行比较

通过对上述两个问题的计算,你明白了什么?

小组讨论:10朵的2/5,也就是把10朵花平均分成5份,求这样的2份是多少。

计算10×2/5时要先约分,实际上也就是先用10÷5,求出1份是多少,再乘2求出2份是多少。

引导小结:求一个数的几分之几是多少,可以用乘法计算。

三、巩固练习

1、做练一练的第1题。

先让学生根据题意涂色,然后列式解答。

2、做练一练的第2题。

通过填空使学生进一步明确:求一个数的几分之几是多少,可以用乘法计算。

3、练习五第6、7题。

四、课堂总结

本节课学习了那些内容?通过学习你有那些收获?还有那些疑问?

五、布置作业

练习五第8、9题。

六年级数学下册教案【篇7】

教学目标

1.使学生掌握分数、小数四则混合运算的运算顺序及计算方法,并能正确地进行计算。

2.训练学生认真审题,能够选择合理简便的解题方法。

3.培养学生良好的学习习惯及正确、合理、灵活、迅速的运算能力。

教学重点和难点

教学重点:掌握分数、小数四则混合运算的运算顺序,并且能根据不同的情况选用不同的方法进行计算。

教学难点:灵活、合理地运用不同的方法进行计算。

教学过程设计

(一)复习

1.第74页第1题。

(1)把下面的小数化成分数:

0.125、0.3、0.5、0.6、0.25、0.75

(2)把下面的分数化成小数:

以上各题用投影片出示,指名口答。

2.我们已经知道,分数、小数加减混合运算,可以根据已知数的具体情况来确定是先把分数化成小数,还是先把小数化成分数,从而进行计算。

下面各题用什么方法进行计算比较简单?

提问:分数、小数加减混合运算一般情况下化成什么数做比较简便?为什么?

提问:分数和小数乘、除混合运算在一般情况下,化成什么数做比较简便?为什么?(第三种方法最简便,但这种做法只有小数能够被分数的分母除尽时才最方便,一般情况下分数、小数乘除混合运算把小数化成分数来做比较简便。)

(二)学习新课

以上这些计算方法是我们进行分数、小数四则混合运算的基本方法。

(板书课题:分数、小数四则混合运算)

(1)小组讨论:这道题怎样计算比较简便?(把小数化成分数计算比较简便。)

(2)全体同学在练习本上试做,通过试做,体会一下为什么用这种方法进行计算简便?

(3)订正,并且说说这种做法有什么好处?(因为计算分数乘、除法时,有时可以先约分再计算比较简便,所以,分数、小数乘除混合运算一般先把小数化成分数后再计算。)

(1)审题:例5与例4有什么不同之处?

(例4是分数、小数乘、除混合运算,例5是分数,小数四则混合运算。)

(2)想一想,做这道题的时候,我们应该注意些什么?(a.运算顺序;b.选择合理恰当的方法。)

(3)小组讨论:这道题是把小数化成分数算简便,还是把分数化成小数算简便?(把小数化成分数计算比较简便。)

(4)全体同学在练习本上试做。

(5)订正。

(6)小结:我们把题目中的小数都化成了分数,这样在乘除过程中,有时可以先约分,使得做起来比较简便,同时得到的是一个准确的结果。

(7)如果计算的结果允许取近似值,也可以先把分数化成小数,取它们的近似值进行计算。在本册教材中,一般要求只取两位小数,这种算法在现在电子计算机越来越被广泛使用的社会里是很有价值的,因为,大多数电子计算机都是用小数来计算的。请你用这种方法试做这道题:

≈5.2÷3.2-1.67×0.7(注意:这一步用“≈”)

=1.625-1.169

=0.456

订正此题,并且教师要强调:如果计算的结果允许取近似值,才可以把分数化成小数来计算。

3.小结。

两位同组的同学互相说一说:

(1)分数、小数乘、除混合运算,怎样计算比较简便?

(2)分数、小数四则混合运算,又怎样计算简便?

看书质疑。

(三)巩固反馈

采用分小组巩固练习的'形式。

1.用题板做练习,大面积反馈。

举题板订正,再把两种不同的计算方法进行比较:

不难看出,第二种方法更简便一些。所以解题方法不是一成不变的,还要根据题目的具体情况,如数的特征、运算符号等决定怎样做简便就怎样做,故在掌握了一般方法的基础上,还要灵活运用。

2.互相帮助:1,3,5组同学做题(1);2,4,6组同学做题(2)。之后,同桌同学交换检查,指出错误,加以改正,使学生掌握检查的方法,并养成检查的习惯。

教师出示正确答案,哪组的同学都做对了就给予表扬。

3.全体同学齐做。

把题中的分数化成小数后再计算。(保留两位小数。)

≈13×0.56-16.24÷3.5

=7.28-4.64

=2.64

(四)课堂总结

六年级数学下册教案【篇8】

教学目标:

1.知道扇形统计图,能说出其特点;

2.会画出简单的扇形统计图;

3.能从扇形统计图中尽可能多地得到信息。

教学准备:

两幅扇形统计图。

教学过程:

一、复习引新

l.复习旧知。

提问:在简单的统计里我们学习过哪些知识,其中条形统计图和折线统计图各有什么特点?

2.引入新课。

出示两幅扇形统计图。说明:这也是一种统计图,叫做扇形统计图。(板书:扇形统计图)哪位同学来说一说,这里的扇形统计图各表示的什么意思?说明:扇形统计图究竟有什么特点呢?它是怎样绘制出来的呢?这就是本节课要学习的内容。

二、教学新课

1.说明扇形统计图及其特点。

说明:从上面的扇形统计图可以看出:它是用一个圆表示各个部分的总数量,在圆里用大小不同的扇形表示出各个部分的数量占总数量的百分之几。这种统计图清楚地反映出各个部分数量同总数量之间的关系。

2.教学例题。

(1)出示例题.根据扇形统计图的表示形式,讨论制成扇形统计图的步骤。引导学生交流各自的想法,得出步骤井板书:

④计算百分数;计算圆心角;画出圆和扇形;标明百分数。

(2)要求学生自己完成第一步,在练习本上计算出各部分数量占总数量的百分之几。同时指名一1

人板演,然后集体订正,用加法检验各部分百分比的和是不是100%。

(3)先说明一个圆的度数是360度,再让学生按总数量的百分之几求出表示各部分数量扇形的圆

心角度数。学生口答,老师板书算式和结果。检验几部分圆心角的和是不是360度。

(4)分割成扇形。

老师说明画法,同时板书:先画一个圆,说明表示总数量;再分割成3个扇形,说明各表示哪个数量。

(5)标明各部分数量名称和百分数。

指名学生说说每个扇形各表示哪个数量,占百分之几,老师在图中板书。让学生自己画圆、分扇形并标明各个部分数量的`名称和百分数。

(6)区分各部分并写出统计图名称。

说明要用阴影或不同颜色区分不同的扇形,写出统计图名称,并让学生自己完成。指名一人板演,其余学生完成在自己的统计图上。集体订正。

(7)小结过程。

提问:谁来看图说说刚才制作这幅统计图的过程?你能说一说这幅统计图的意思吗?扇形统计图有什么特点?

三、课堂练习

l.做课后习题第1题。

提问:统计图里的圆表示什么?这个扇形统计图表示什么意思?让学生计算后填写课本上的表格。出示表格,指名口答结果,老师板书。让学生说说每一个数量是怎样计算出来的。

2.做课后习题第2题。

提问:这个圆等分成多少份?每份所对扇形的圆心角多少度?请大家先计算每项收入相应的扇形圆心角度数,再画出扇形统计图。老师巡视辅导。提问学生每一部分所占扇形是图的20等份里的几份。

四、课堂小结

扇形统计图有什么特点?怎样根据统计数据来制作扇形统计图?

六年级数学下册教案【篇9】

教学目标

1.结合丰富的实例,认识反比例。

2.能根据反比例的意义,判断两个相关联的量是不是成反比例。

3.利用反比例解决一些简单的生活问题,感受反比例关系在生活中的广泛应用。

教学重点

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学难点

认识反比例,能根据反比例的意义判断两个相关联的量是不是成反比例。

教学过程

一、复习

1.什么是正比例的量?

2.判断下面各题中的两种量是否成正比例?为什么?

(1)工作效率一定,工作时间和工作总量。

(2)每头奶牛的产奶量一定,奶牛的头数和产奶总量。

(3)正方形的边长和它的面积。

二、导入新课

利用反义词来导入今天研究的课题。今天研究两种量成反比例关系的变化规律。

三、进行新课

认识加法表中和是12的直线及乘法表中积是12的曲线。

引导学生发现规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。

让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每

两个相对应的数的乘积各是多少?你有什么发现?独立观察,思考。

同桌交流,用自己的语言表达。

写出关系式:速度×时间=路程(一定)

观察思考并用自己的语言描述变化关系乘积(路程)一定。

把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发现?用自己的语言描述变化关系。

写出关系式:每杯果汁量×杯数=果汗总量(一定)

以上两个情境中有什么共同点?

4.反比例意义

引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是一定的。这两种量之间是反比例关系。

教学内容:

苏教版义务教育课程标准实验教科书第60-61页

教材分析:

在本节课之前,学生们已经基本掌握了“用方向和距离描述、画出相关物体位置和描述简单的行走路线”方法。“实际测量”是一次实践与综合应用,主要目的是让学生通过一些测量活动,掌握简单的室外工具测量和估测的方法,并把所学知识运用到生活中去,解决一些实际问题,进一步发展空间观念。

“实际测量”的主要内容包括:用工具测量两点间的距离,步测和目测。

在“用工具测量两点间的距离”的内容中,先学习在地面上测量两点间的距离,再用卷尺或测绳分段测量出相应的距离;“步测和目测”的内容中,介绍了得到步长的方法以及用步测的方法测定一段距离;目测重在介绍目测的方法。

教学目标:

⑴使学生会用工具测量两点间的距离、步测和目测的方法。

⑵在用工具测量两点间的距离、步测和目测的过程中,进一步感受所学知识在生活中的应用价值,发展空间观念。

⑶使学生体验数学与生活的密切联系,进一步增强用数学的眼光观察日常生活现象,解决日常生活问题的意识。

教学重点:

掌握“用工具测量两点间的距离、步测和目测”的方法。

教学难点:

掌握“用工具测量两点间的距离、步测和目测”的方法。

教学具准备:

卷尺、标杆、50米跑道。

教学流程:

一、揭示课题,明确学习内容。

⑴揭示课题。

板书课题——实际测量。让学生说说对课题的理解。

⑵了解测量工具。

让学生说说知道的测量工具;预设:卷尺、测量仪、标杆等。

⑶明确学习内容。

测量地面上相隔较远的两点间的距离;步测和目测。

二、了解测量知识,为实践活动作准备。

⑴测量相隔较远的两点间的距离。

理解测定直线的意义:如果不先测定直线就去测量相隔较远的两点间的距离,分段测量时容易偏离两点间的连线,从而降低测量结果的精确程度。

理解测定直线的方法:把相隔较远的两点间的连线分成若干小段,以便于工具测量;

观察教材上的图片,让学生说说怎样在A、B两点间测定直线的?(2根以上的标杆成一线时)

掌握测定直线的步骤:测定直线;分段量出;记录计算。

⑵学习步测的方法。

理解步测在实际生活中应用:在没有测量工具或对测量要求不十分精确是,可以用步测。

掌握步测的方法:用步数×每一步的距离。

理解步测的关键:确定平均步长。

掌握确定平均步长的方法:让学生说说确定平均步长的方法,形成一般测定平均步长的过程,量出一段距离(50米),反复走几次,记录数据,计算步长。

理解实践活动的内容和方法:测定平均步长;步测篮球场的长和宽。

⑶学习目测的`方法。

观察黑板,说说黑板的长和宽,交流得到黑板的长和宽的思考过程。预设:一米一米数出;比较得到;等等。

目测较短距离:人书本的长和宽;课桌的长和宽等等;

理解目测较长距离的方法:先量出一段距离(50米),每隔10米插上标杆,观察、理解;用目测发方法测定教学楼的长度。

三、实践活动。

⑴测定直线。

⑵确定平均步长。

⑶步测篮球场的长和宽。

⑷目测教学楼的长度。

第三单元分数除法

第10课时按比例分配的实际问题

教学内容:

课本第59--60页例11,“试一试”和“练一练”,完成练习十第1-3题。

教学目标:

1、使学生理解按比例分配实际问题的意义。

2、使学生通过运用比的意义和基本性质解答有关按比例分配的实际问题。

教学重难点:

理解按比例分配实际问题的意义,掌握解题的关键。

课前准备:

课件

教学过程:

一、创设情境、引入新知

根据信息填空:

(1)男生有31人,女生有21人,男生人数是女生人数的。

(2)红花的朵数与黄花朵数的比是3:2。你能联想到什么?

师:数学与生活是密切联系的,今天这节课就来研究前两节所学的比在生活的运用。

二、探究新知

1、出示例11中的实物图及例题。

(1)让学生阅读题目后说说你知道哪些信息?

(2)让学生说说你是怎样理解红色与黄色方格比这句话?(先同桌相互说一说)然后全班交流,学生可能有以下两种想法:

①红色与黄色方格数的比是3:2,就是把30个方格平均分成5份,其中3份涂红色,2份涂黄色;

②红色与黄色方格数的比是3:2,红色方格占总格数的3/5,黄色方格占2/5。

③红色与黄色方格数的比是3:2,也就是红色方格数是黄色方格数的3/2,或是黄色方格数是红色方格数的2/3。

师说明:在实际生活中,很多情况下,并不只是把一个数量平均分,使每一部分都一样多,而是在平均的基础上,按一定的比进行分配,这一题就是把30按3:2进行分配。

学生尝试解答,用你学过的知识来解答例2,并在学生小组内说说你是怎样想的?

说说你是怎样做的?

方法一:3+2=530÷5×330÷5×2

方法二:30×3/530×2/5

2、比较一下这几种方法中你理解的哪种方法,你是怎样理解的讲给同桌听一听?

说说这种方法的思路?(红色与黄色方格数的比是3:2,就是说,在30个方格里,红色方格数占3份,黄色方格数占2份,一共是5份,也就是说红色方格占总格数的,黄色方格占)

如何进行检验?自己检验请你检验一下同组同学做得对不对?(可以把求得的红色和黄色方格数相加,看是不是等于总方格数。或者可以把求得的红色和黄色方格数写成比的形式,看比简后是不是等于3:2)

3、完成练一练第1题。

4、完成试一试。

出示试一试。

提问:“按各小组人数的比分配”是什么意思?你想到了什么?

5、归纳(讨论)。

(1)比较例题与试一试题目在解答方法上有什么共同特点?

(2)怎么解答?

求总份数,各部分量占总数量的几分之几,最后求各部分量。

(3)教师指出:用这种特定方法解答的分配问题叫做“按比例分配”问题(板书课题)

三、应用比的知识解决实际问题

1、练一练第2题。

独立完成后进行交流

指出:把180块巧克力按照三个班的人数来分配,就是按怎样的比进行分配?

2、练一练第3题。

独立填表,完成后集体核对。

3、练习十第1题。

四、课堂总结

这节课学过以后,你有什么收获?

五、布置作业:

练习十第2、3题。

教学反思:

教学过程:

(一)导引探究,由表及里

教学例1,认识成正比例的量。

1.谈话引出例1的表格。一辆汽车在公路上行驶,行驶的时间和路程如下表。

时间(时)123456……路程(千米)80160240320400480……

在让学生说一说表中列出了哪两种量之后,教师引导学生逐步探究:行驶的时间和路程有关系吗?行驶的时间是怎样随着路程的变化而变化的?行驶的时间和路程的变化有什么规律?(学生探究第3个问题时,教师可进行适当的引导,如引导学生写出几组路程和时间对应的比,并要求学生求出比值。)

2.引导学生交流并聚焦以下内容:路程和时间是两种相关联的量,路程随着时间的变化而变化;时间扩大、路程也扩大,时间缩小、路程也缩小;路程和时间的比值总是一定的,也就是“路程/时间=速度(一定)”(板书关系式)。

3.教师对两种量之间的关系给予具体说明:路程和时间是两种相关联的量,时间变化,路程也随着变化。当路程和对应时间的比值总是一定(也就是速度一定)时,我们就说行驶的路程和时间咸正比例(板书“路程和时间成正比例”),行驶的路程和时间是成正比例的量。

4.让学生根据板书完整地说一说表中路程和时间成什么关系。

[数学概念是客观现实中数量关系和空间形式的本质属性在人脑中的反映。数学概念的来源一般有两个方面:一是直接从实际经验中概括得出;二是在原有的初级概念基础上通过新旧概念的相互作用而获得。正比例概念的形成属于前者,因此例1的教学可以充分利用表格,让学生通过对表中数据的观察和分析,由浅入深,由表及里,逐步认识成正比例的量的特点。本环节先让学生观察例题中的表格,说一说表中列出的是哪两种量;接着用三个引探性的问题逐步引导学生在探究学习活动中发现路程与时间之间的关系及变化趋势;最后,聚焦、明晰这两种量之间的关系,让学生初步认识正比例的特点。这样的教学有利于学生经历正比例概念的形成过程。]

(二)自主探究,尝试归纳

出示例2:汽车从甲地开往乙地,行驶的速度和所用时间如下表,它们之间有什么规律?

速度(千米/时)406080100120……时间(时)3020151210……

1.出示供学生自主探究的问题:当速度变化时,时间是否也随着变化?这种变化与例1中两种量的变化有什么不同?速度和时间的变化有什么规律?

2.引导学生在自主探究、交流中认识成反比例的量的特点:速度和时间是两种相关联的量,速度变化,时间也随着变化;例2中两种量的变化规律是:一种量扩大,另一种量反而缩小;速度和时间的变化规律是它们的乘积一定,可以表示为“速度×时间=路程(一定)”(板书关系式)。

3.在发现变化规律的基础上,让学生仿照正比例的意义,尝试归纳反比例的意义,引出反比例概念(板书“速度和时间成反比例”)。

[从生活原型中逐步抽象,从已有概念中衍生,从数学概念的学习中迁移等,都是建构数学概念的有效方法。有了学习正比例的基础,反比例意义的学习应更加体现学生的学习自主性。本环节除了让学生发现成反比例的量之间的关系,还让学生仿照正比例的意义,尝试归纳反比例的意义。这样能真正发挥学生的学习主动性,让学生在自主探究过程中经历反比例概念的形成过程。]

(三)对比探究,把握本质规律

1.将例1、例2教学时探究发现的内容用多媒体呈现出来,揭示正比例、反比例的内涵本质。

多媒体呈现:

例1路程/时间=速度(一定)

路程和时间成正比例

例2速度×时间;路程(一定)

速度和时间成反比例

2.探究活动。

(1)让学生仿照例1完成教材第62页“试一试”(题略),仿照例2完成教材第65页“试一试”(题略)。

(2)引导学生将成正比例的量与成反比例的量进行对比探究,找出它们的相同点与不同点。

[例1中路程和时间相依互变,速度不变,例2中速度和时间相依互变,路程不变,这样的对比有利于学生从变中看到不变;例1中速度是不变量,例2中路程是不变量,同样都有不变量,例1中路程和时间成正比例,而例2中速度和时间成反比例,这样的对比有利于学生从不变中看到变。变与不变关键要抓住本质——“比值一定”还是“积一定”。对比探究活动旨在让学生把握概念内在的联系与区别,形成正比例、反比例概念的认知结构。]

(3)引导学生尝试用字母表达式对正比例的意义和反比例的意义进行抽象概括。

启发学生思考:①如果用字母x和y分别表示两种相关联的量、用k表示它们的比值,正比例关系可以怎样表示?②如果用字母x和y表示两种相关联的量,用k表示它们的积,反比例关系可以怎样表示?

根据学生的回答,板书关系式“正比例y/x=k(一定)”,“反比例x×y=k(一定)”。

[概念符号化在概念教学中很重要。《数学课程标准》明确指出,符号感主要表现之一是能从具体情境中抽象出数量关系和变化规律,并用符号来表示。学生概念形成的主要过程为:感知具体对象阶段、尝试建立表象阶段、抽象本质属性阶段、符号表征阶段、概念运用阶段。在符号表征阶段,学生尝试用语言或符号对同类对象的本质属性进行概括。本阶段教学是概念符号表征阶段,在这个阶段之前,学生对正比例、反比例的本质属性及特征有一定的认识,可以开始尝试用符号对正比例、反比例进行概括。“y/x=k(一定)”,“x×y=k(一定)”,是对正比例、反比例意义的抽象表达,是揭示正比例、反比例数量关系及其变化规律的数学模型。]

3.组织对比性练习。

(1)成正比例、反比例的对比练习。笔记本的单价、购买的数量和总价如下表:

表1

数量/本2030405060……总价/元3045607590……

表2

单价/元1。52456……数量/本4030151210……

在表1中,相关联的量是和,随着变化,是一定的。因此,数量和总价成关系。!

在表2中,相关联的量是和,随着变化,是一定的。因此,单价和数量成关系。

[将获得的新概念推广到其他的同类对象中去,是概念运用的过程,也是进一步理解概念的过程。表1是成正比例的量,表2是成反比例的量,这种正比例与反比例的对比,有利于学生进一步加深对正比例、反比例意义的认识,对正比例或反比例中两种量变化趋势和规律的把握。]

(2)成比例与不成比例的对比练习。

下面每题中的两个量哪些成正比例,哪些成反比例?哪些既不成正比例也不成反比例?

①圆的直径和周长。

②小麦每公顷产量一定,小麦的公顷数和总产量。

③书的总页数一定,已经看的页数和未看的页数。

[这一类型题比较抽象,学生只有对正比例、反比例的意义有了较深刻的理解,才能正确地作出判断。这样的练习有助于学生从整体上把握各种量之间的关系,有助于进一步提高学生判断成正比例、反比例的量的能力。此题型在新授课上还只是让学生初步接触,重点训练还要放在练习课。]

(3)从生活中寻找成正比例、反比例的量的实例,进行对比练习。

[举例练习是概念巩固阶段的重要组成部分。如果让学生独立找生活中成正比例、反比例的量的实例,可能有一定难度,我们可采用小组讨论的形式进行。此练习还可以让学生感受到数学与生活的联系。

六年级数学下册教案【篇10】

教学目标:

通过复习使学生进一步理解角、垂直与平行、三角形和四边形的概念,掌握它们的特征和性质,以及各图形的联系。‘

教学过程:

1、直线、射线、线段。

提问:

1)分别说一说什么叫直线、射线、线段?

2)直线、射线和线段有什么区别?

完成123页上面的“做一做”。(学生笔做)

提问:

1)什么叫做角?

2)角的大小与什么有关?

整理:把表中的空格填写完整。

完成123页下面“做一做”的1题、2题。

2、锐角直角钝角平角周角

大于0°

小于90°

垂直与平行

提问:

1)在同一平面内,两条直线的相互位置有哪几种情况?

2)什么样的两条直线叫做互相垂直?

什么样的两条直线叫做互相平行?

回答:下面几组直线中,哪组的两条直线互相垂直?哪组的两条直线互相平

完成教材124页的“做一做”

提问:

1)什么叫做三角形?

2)在下面的'三角形中,顶点A的对边是指哪一条边?

动笔做:以顶点A的对边为底,画出三角形的高,并标出底和高。(前页一幅图)

在下面的表中填写三角形的名称和各自的特征。

名称

图形

特征

回答:锐角三角形、直角三角形、钝角三角形的联系与区别。

3、四边形

提问:什么叫四边形?

回答:看图说出下面各图的特点,再说一说图中各字母表示什么

想一想:为什么说长方形、正方形都是特殊的平行四边形?为什么说正方形是特殊的长方形?

完成125页“做一做”中的1、2题。

六年级数学下册教案【篇11】

教学目标:

1.使学生进一步理解比例的意义,懂得比例各部分名称。

2.经历探索比例基本性质的过程,理解并掌握比例的基本性质。

3.能运用比例的基本性质判断两个比能否组成比例。

教学重点:

比例的基本质性。

教学难点:

发现并概括出比例的基本质性。

教具准备:

多媒体课件

教学过程:

一、旧知铺垫

1.什么叫做比例?

2.应用比例的意义,判断下面的比能否组成比例。

和5:2

1/2:1/3 和6 : 4

和1:4

二、探索新知

1.比例各部分名称。

(1)教师说明组成比例的四个数的名称。

板书

组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。

例如: = 60:40

内项: 6o

外项: 40

(2)学生认一认,说一说比例中的外项和内项。让学生再写出几个比例。

如: : = 60:40

外 内 内 外

项 项 项 项

2.比例的基本性质。

你能发现比例的外项和内项有什么关系吗?

(1) 学生独立探索其中的规律。

(2) 与同学交流你的发现。

(3) 汇报你的发现,全班交流。(师作适当的补充)

在比例里,两个内项的积等于两个外项的积。

板书

两个外项的积是

两个内项的积是

外项的积等于内项的'积。

(4) 举例说明,检验发现。

1

两个外项的积是

两个内项的积是

外项的积等于内项的积。

如果把比例改成分数形式呢?

如: = 60/40

3.

等号两边的分子和分母分别交叉相乘,所得的积相等。

(5) 学生归纳。

在比例里,两外外项的积等于两个内项的积,这叫做比例的基本性质。

4.填一填。

(1)1/2:1/5 =1/4:1/10

( )( )=( )( )

六年级数学下册教案【篇12】

教学过程

1、出示主题图。教材第2页主题图。

2、引导学生观察图片,说出图中内容。(教师:观察上图,你能发现什么?0℃代表什么意思?-2℃和2℃各代表什么意思?)

引出课题并板书:负数的初步认识

1、教学例1 。

(1)教师板书关键数据:0℃ 。

(2)教师讲解0℃的意思: 0℃表示淡水开始结冰的温度。

比0℃低的温度叫零下温度,通常在数字前加“-”(负号):如-2℃表示零下2摄氏度,读作:负三摄氏度。

比0℃高的温度叫零上温度,在数字前加“+”(正号),一般情况下可省略不写:如+2℃表示零上2摄氏度,读作:正三摄氏度,也可以写成2℃,读作:三摄氏度。

(2)我们来看一下课本上的图,你知道北京的气温吗?最高气温和最低气温都是多少呢?随机点同学回答。

(4)了解了北京的气温,下面我想请同学告诉我哈尔滨的气温,它与上海气温比较又怎样呢?用手势告诉大家好吗?

2、学生讨论合作,交流反馈。

(1)请同学们把图上其它各地的'温度都写出来,并读一读。

(2)教师展示学生不同的表示方法。

(2)小结:通过刚才的学习,我们用“+”和“-”就能准确地表示零上温度和零下温度。

2、教学例2。

(1)教师出示存折明细示意图。(教材第2页的主题图)教师:同学们能说说“支出(-)或(+)”这一栏的数各表示什么意义吗?组织学生分组讨论、交流,然后指名汇报。

(2)引导学生归纳总结:

像20__,500这样的数表示的是存入的钱数;而前面有“-”号的数,像-500,-122这样的数表示的是支出的钱数。

(2)教师:上述数据中500和-500意义相同吗?

(500和-500意义相反,一个是存入,一个是支出)。

你能用刚才的方法快速而又准确地表示出向东走100m和向西走200m、前进20步和后退25步吗?说说你是怎么表示的?

师把学生的表示结果一一板书在黑板上。

4、归纳正数和负数。

(1)你能把黑板上板书的这些数进行分类吗?小组讨论交流。

(2)教师展示分类的结果,适时讲解。

像+8,+4,+20__,+500,+100,+20这样的数,我们把它们叫做正数,前面的+号也可以省略不写。

像-8,-4,-500,-20这样的数,我们把它叫做负数。

(2)那么0应该归为哪一类呢?

组织学生讨论,相互发表意见。

(4)归纳:0既不是正数也不是负数,它是正数和负数的分界点。

(5)你在什么地方见过负数?

鼓励学生注意联系实际举出更多的例子。

六年级数学下册教案【篇13】

教学目标:

1:使学生理解比的意义,掌握比的各部分名称,能正确地读、写比,并会正确地求比值。

2:引导学生加强知识之间的联系,使学生掌握的知识系统化,提高学生分析解决问题的能力。

3:通过合作与交流,感受学生学习的乐趣。

教学重点:掌握比的各部分名称,能正确地读、写比。

教学难点:理解比的意义。

法制渗透:《中华人民共和国国旗法》

第十九条在公共场合故意以焚烧、毁损、涂划、玷污、践踏等方式侮辱中华人民共和国国旗的,依法追究刑事责任;情节较轻的,参照治安管理处罚条例的处罚规定,由公安机关处以十五日以下拘留。

教学过程:

一、引入。

观察图片后,谈话引入。

1.教学比的意义。

(1)教学同类量的比。

A、20__年10月15日,我国第一艘载人飞船“神舟”五号顺利升空。

在太空中,执行此次任务的航天员杨利伟在飞船里向人们展示了联合国旗和中华人民共和国国旗。

提问:根据你所获得的信息,你想到了什么?

根据学生的回答,引入法制教育。

中华人民共和国国旗法》

第十九条在公共场合故意以焚烧、毁损、涂划、玷污、践踏等方式侮辱中华人民共和国国旗的,依法追究刑事责任;情节较轻的,参照治安管理处罚条例的`处罚规定,由公安机关处以十五日以下拘留。

学生再次熟悉题目后,提问:杨利伟展示的两面旗都是长15cm,宽10cm,怎样用算式表示它们的长和宽的关系?

引导学生说出:可以求长是宽的几倍?或求红旗的宽是长的几分之几?

B、这两个关系都是用什么方法来求的?(除法)

C、比较这两个数量之间的关系,除了除法,还有一种表示方法,即“比”。可以说成是:长和宽的比是15比10,或宽和长的比是10比15。

D、不论是长和宽的比还是宽和长的比,都是两个长度的比,相比的两个量是同类的量。

(2)教学不同类量的比。

A、“神舟”五号进入运行轨道后,在距地350km的高空作圆周运动,平均90分钟绕地球一周,大约运行42252km。怎样用算式表示飞船进入轨道后平均每分钟飞行多少千米?

路程÷时间=速度,算式:42252÷90

B、对于这种关系,我们也可以说:飞船所行路程和时间的比是42252比90,这里的42252千米与90小时是两个不同类的量。

(3)归纳比的意义。

A、通过上面两个例子,你认为什么是比?

学生试说,教师总结:两个数相除,又叫做两个数的比。

2.教学比的写法、比的各部分名称。

比的写法。

15比10记作15∶1010比15记作10∶15

42252比90记作42252:90

比的各部分名称。

A、学生自学课本,小组讨论概括知识点。

B、小组汇报并举例:

“:”是比号,读作“比”。比号前面的数,叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。例如:

15∶10=15÷10=1

12……

三、巩固练习。

完成课本“做一做”第1题。

四、布置作业。

课本练习十一的第1题。前项比号后项比值

六年级数学下册教案【篇14】

教学内容:

比较正数和负数的大小。

教学目的:

1、借助数轴初步学会比较正数、0和负数之间的大小。

2、初步体会数轴上数的顺序,完成对数的结构的初步构建。

教学重、难点:负数与负数的比较。

教学过程:

一、复习:

1、读数,指出哪些是正数,哪些是负数?

-8 5.6 +0.9 - + 0 -82

2、如果+20%表示增加20%,那么-6%表示 。

二、新授:

(一)教学例3:

1、怎样在数轴上表示数?(1、2、3、4、5、6、7)

2、出示例3:

(1)提问你能在一条直线上表示他们运动后的情况吗?

(2)让学生确定好起点(原点)、方向和单位长度。学生画完交流。

(3)教师在黑板上话好直线,在相应的点上用小图片代表大树和学生,在问怎样用数表示这些学生和大树的相对位置关系?(让学生把直线上的点和正负数对应起来。

(4)学生回答,教师在相应点的下方标出对应的数,再让学生说说直线上其他几个点代表的数,让学生对数轴上的点表示的正负数形成相对完整的认识。

(5)总结:我们可以像这样在直线上表示出正数、0和负数,像这样的直线我们叫数轴。

(6)引导学生观察:

A、从0起往右依次是?从0起往左依次是?你发现什么规律?

B、在数轴上除可以表示整数外,还可以表示分数和小数。请学生在数轴上分别找到1.5和-1.5对应的点。如果从起点分别到1.5和-1.5处,应如何运动?

(7)练习:做一做的第1、2题。

(二)教学例4:

1、出示未来一周的天气情况,让学生把未来一周每天的最低气温在数轴上表示出来,并比较他们的大小。

2、学生交流比较的方法。

3、通过小精灵的话,引出利用数轴比较数的大小规定:在数轴上,从左到右的顺序就是数从小到大的顺序。

4、再让学生进行比较,利用学生的具体比较来说明“-8在-6的左边,所以-8〈-6”

5、再通过让另一学生比较“8〉6,但是-8〈-6”,使学生初步体会两负数比较大小时,绝对值大的负数反而小。

6、总结:负数比0小,所有的负数都在0的左边,也就是负数都比0小,而正数比0大,负数比正数小。

7、练习:做一做第3题。

三、巩固练习

1、练习一第4、5题。

2、练习一第6题。

3、某日傍晚,黄山的.气温由上午的零上2摄氏度下降7摄氏度,这天傍晚黄山的气温是 摄氏度。

四、全课总结

(1)在数轴上,从左到右的顺序就是数从小到大的顺序。

(2)负数比0小,正数比0大,负数比正数小。

第二课教学反思:

许多教师认为“负数”这个单元的内容很简单,不需要花过多精力学生就能基本能掌握。可如果深入钻研教材,其实会发现还有不少值得挖掘的内容可以向学生补充介绍。

例3——两个不同层面的拓展:

1、在数轴上表示数要求的拓展。

数轴除可以表示整数,还可以表示小数和分数。教材例3只表示出正、负整数,最后一个自然段要求学生表示出—1.5。建议此处教师补充要求学生表示出“+1.5”的位置,因为这样便于对比发现两个数离原点的距离相等,只不过分别在0的左右两端,渗透+1.5和—1.5绝对值相等。

同时,还应补充在数轴上表示分数,如—1/3、—3/2等,提升学生数形结合能力,为例4的教学打下夯实的基础。

2、渗透负数加减法

教材中所呈现的数轴可以充分加以应用,如可补充提问:在“—2”位置的同学如果接着向西走1米,将会到达数轴什么位置?如果是向东走1米呢?如果他从“—2”的位置要走到“—4”,应该如何运动?如果他想从“—2”的位置到达“+3”,又该如何运动?其实,这些问题就是解决—2—1;2+1;—4—(—2);3—(—2)等于几,这样的设计对于学生初中进一步学习代数知识是极为有利的。

例4——薄书读厚、厚书读薄。

薄书读厚——负数大小比较的三种类型(正数和负数、0和负数、负数和负数)

例4教材只提出一个大的问题“比较它们的大小”,这些数的大小比较可以分为几类?每类比较又有什么方法,教材则没有明确标明。所以教学中,当学生明确数轴从左到右的顺序就是数从小到大的顺序基础上,我还挖掘三种不同类型,一一请学生介绍比较方法,将薄书读厚。

将厚书读薄——无论哪种类型,比较方法万变不离其宗。

六年级数学下册教案【篇15】

教学目标

1、经历认识圆柱展开图和探索表面积计算方法的过程。

2、认识圆柱展开图,掌握圆柱表面积的计算方法,会计算圆柱的表面积。

3、积极参加数学活动,建立展开图与圆柱侧面、底面的联系,发展初步的空间观念。

教学重点

圆柱体表面积公式的推导。

教学难点

运用表面积公式计算实际图形的表面积。

教具准备

圆柱表面展开示意图。

教学过程

一、读题导入

1、齐读课题。

师:看到这个课题,你们想到了哪些与之相关的知识。

生:长方体和正方体的表面积;圆柱的底面和侧面。

2、复习相关知识

(1)什么是长方体、正方体的表面积?它们是怎么计算的?

二、探索新知

1、课件出示圆柱,揭示圆柱的表面积公式

师:根据刚才的讨论,你能说说应该要求出圆住的表面积,必须哪些条件吗?并说说理由。

生:因为圆柱的表面有一个侧面和两个底面。所以用一个侧面积加上两个底面积。

2、教学圆柱的表面积

(1)师:(课件出示上堂课中圆柱的侧面展开图),上堂课,我们研究了圆柱的侧面展开图,以及圆柱侧面积的计算方法,今天我们来进一步讨论圆柱表面积的计算方法。

(2)谁还记得圆柱侧面积的计算公式。

学生:圆柱的侧面积=底面周长高

(3)拿一个圆柱形的纸盒,指出它的侧面和两个底面。然后展开,使学生直观看到圆柱展开图是两个同样大的圆和一个长方形。

(4)议一议:怎样求圆柱的表面积?学生讨论。

学生:圆柱的'表面积就是用圆柱的侧面积加上两个底面积。

(4)教学例题:

出示教材中圆柱示意图,让学生了解圆柱的高和半径,鼓励学生自己尝试计算。

(5)交流学生计算的方法和结果。如果出现列综合算式的,要给予表扬。如果没有。提出兔博士的话,鼓励学生尝试,老师可进行必要的指导。

三、练习

试一试

(1)提出试一试的问题,让学生尝试计算。

(2)交流计算的过程和结果。重点说说计算的过程和方法,注意本题中给出已知条件是圆柱的底直径。

四、巩固

练一练1:则由学生独立完成。

练一练2:此题是一个半圆柱体,应该怎样理解它的表面积,学生充分发表意见后再让学生自己来完成。

练一练3:先指导学生明确解决问题的思路,再自主解答。

五、家庭作业

自己找一个圆柱体的物体,来测量它的数据并计算出它的表面积。

六年级数学下册教案15篇

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
124140